ODYSSEE MADAGASCAR

SKU: 101403211

$150.00

Todos los wallpapers son por pedido

Visita nuestra categoría entrega inmediata.

Descripción
We plunge into the tropical jungle with the most trendy plant and animal motifs. The motifs borrow from Madagascar the wealth of its ecosystem, its palm trees, tropical foliage, its lemurs… Graphics are played with, from the darkest ranges of greens and ochres to the lightest. Away from it all!
Detalles

Información adicional

Marca

Caselio

Política de pedido y envíos:

Verificar bien el codigo del diseño que ha escogido, el tamaño de cada wallpaper y el de su pared para que no hayan errores. Los pedidos se trabajan entre 10 y 15 días hábiles, a partir del lunes o jueves siguiente al día que realiza su orden y hace el abono, pedidos de 3 rollos o menos deben ser pagados en su totalidad.

 

Te recomendamos

Entrega inmediata

$150.00

AUTOUR DU MONDE

$150.00

Categorias
Wallpapers por Tema

Calculadora de rollo

Estas medidas son para rollos tamaño estándar de 0.53cm x 10m (5m²)

Pared 1
m

x

m

=

[width_wall_1]*[height_wall_1]

Necesitará

[width_wall_1]/0.53

Tira(s) de

[height_wall_1] * 106
cm

Para un total de

rollo(s)

Math.ceil( Math.ceil([width_wall_1] / 0.53) / Math.floor(10 / ([height_wall_1] * 100 / 100) ) )
Pared 2
m

x

m

=

[width_wall_1]*[height_wall_1]

You will need

[width_wall_2]/0.53

Stipe(s) of

[height_wall_2] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_2] / 0.53) / Math.floor(10 / ([height_wall_2] * 100 / 100) ) )
Pared 3
m

x

m

=

[width_wall_3]*[height_wall_3]

You will need

[width_wall_3]/0.53

Stipe(s) of

[height_wall_3] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_3] / 0.53) / Math.floor(10 / ([height_wall_3] * 100 / 100) ) )
Pared 4
m

x

m

=

[width_wall_4]*[height_wall_4]

You will need

[width_wall_4]/0.53

Stipe(s) of

[height_wall_4] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_4] / 0.53) / Math.floor(10 / ([height_wall_4] * 100 / 100) ) )

Vas a necersitar

[rolls_wall_1]+[rolls_wall_2]+[rolls_wall_3]+[rolls_wall_4]
Rollos*
Wall 1
m

x

m

=

[feet_width_wall_1]*[feet_height_wall_1]
ft²

You will need

Math.ceil(feet_width_wall_1 / ( 53 / 12))

Stipe(s) of

[feet_height_wall_1] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_1 / ( 53 / 12)) * feet_height_wall_1 * 10.02) / 10.05 * 3)
Wall 2
m

x

m

=

[feet_width_wall_1]*[feet_height_wall_1]
ft²

You will need

[feet_width_wall_2]/0.53

Stipe(s) of

[feet_height_wall_2] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_2 / ( 53 / 12)) * feet_height_wall_2 * 10.02) / 10.05 * 3)
Wall 3
m

x

m

=

[feet_width_wall_3]*[feet_height_wall_3]
ft²

You will need

[feet_width_wall_3]/0.53

Stipe(s) of

[feet_height_wall_3] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_3 / ( 53 / 12)) * feet_height_wall_3 * 10.02) / 10.05 * 3)
Wall 4
m

x

m

=

[feet_width_wall_4]*[feet_height_wall_4]
ft²

You will need

[feet_width_wall_4]/0.53

Stipe(s) of

[feet_height_wall_4] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_4 / ( 53 / 12)) * feet_height_wall_4 * 10.02) / 10.05 * 3)

You Need Total

[feet_rolls_wall_1]+[feet_rolls_wall_2]+[feet_rolls_wall_3]+[feet_rolls_wall_4]
Roll(s)*