Papel pintado gris Moderno Salón Dormitorio Cocina HECHO EN ALEMANIA 10,05x053m

SKU: 82380

Todos los wallpapers son por pedido

Visita nuestra categoría entrega inmediata.

Descripción
Este fondo de pantalla es un eufemismo. Su sobrio diseño de rayas crea una estructura sutil. Las rayas finas y paralelas crean un efecto elegante. Una habitación adornada con este papel pintado rezuma grandeza y grandeza. Este papel pintado queda bien en todas las habitaciones de un apartamento o casa. Su color, un blanco suave, es reservado y deja protagonismo al mobiliario. La instalación es fácil: aplica pasta a la pared, inserta el papel tapiz, presiona y listo. En caso de reforma, se puede retirar con la misma facilidad: seco y en tiras enteras.
Detalles

Información adicional

Marca

Marburg

Color

gris

Estilo

moderno

Por patrones

gris

Política de pedido y envíos:

Verificar bien el codigo del diseño que ha escogido, el tamaño de cada wallpaper y el de su pared para que no hayan errores. Los pedidos se trabajan entre 10 y 15 días hábiles, a partir del lunes o jueves siguiente al día que realiza su orden y hace el abono, pedidos de 3 rollos o menos deben ser pagados en su totalidad.

 

Te recomendamos

Categorias
Wallpapers por Tema

Calculadora de rollo

Estas medidas son para rollos tamaño estándar de 0.53cm x 10m (5m²)

Pared 1
m

x

m

=

[width_wall_1]*[height_wall_1]

Necesitará

[width_wall_1]/0.53

Tira(s) de

[height_wall_1] * 106
cm

Para un total de

rollo(s)

Math.ceil( Math.ceil([width_wall_1] / 0.53) / Math.floor(10 / ([height_wall_1] * 100 / 100) ) )
Pared 2
m

x

m

=

[width_wall_1]*[height_wall_1]

You will need

[width_wall_2]/0.53

Stipe(s) of

[height_wall_2] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_2] / 0.53) / Math.floor(10 / ([height_wall_2] * 100 / 100) ) )
Pared 3
m

x

m

=

[width_wall_3]*[height_wall_3]

You will need

[width_wall_3]/0.53

Stipe(s) of

[height_wall_3] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_3] / 0.53) / Math.floor(10 / ([height_wall_3] * 100 / 100) ) )
Pared 4
m

x

m

=

[width_wall_4]*[height_wall_4]

You will need

[width_wall_4]/0.53

Stipe(s) of

[height_wall_4] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_4] / 0.53) / Math.floor(10 / ([height_wall_4] * 100 / 100) ) )

Vas a necersitar

[rolls_wall_1]+[rolls_wall_2]+[rolls_wall_3]+[rolls_wall_4]
Rollos*
Wall 1
m

x

m

=

[feet_width_wall_1]*[feet_height_wall_1]
ft²

You will need

Math.ceil(feet_width_wall_1 / ( 53 / 12))

Stipe(s) of

[feet_height_wall_1] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_1 / ( 53 / 12)) * feet_height_wall_1 * 10.02) / 10.05 * 3)
Wall 2
m

x

m

=

[feet_width_wall_1]*[feet_height_wall_1]
ft²

You will need

[feet_width_wall_2]/0.53

Stipe(s) of

[feet_height_wall_2] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_2 / ( 53 / 12)) * feet_height_wall_2 * 10.02) / 10.05 * 3)
Wall 3
m

x

m

=

[feet_width_wall_3]*[feet_height_wall_3]
ft²

You will need

[feet_width_wall_3]/0.53

Stipe(s) of

[feet_height_wall_3] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_3 / ( 53 / 12)) * feet_height_wall_3 * 10.02) / 10.05 * 3)
Wall 4
m

x

m

=

[feet_width_wall_4]*[feet_height_wall_4]
ft²

You will need

[feet_width_wall_4]/0.53

Stipe(s) of

[feet_height_wall_4] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_4 / ( 53 / 12)) * feet_height_wall_4 * 10.02) / 10.05 * 3)

You Need Total

[feet_rolls_wall_1]+[feet_rolls_wall_2]+[feet_rolls_wall_3]+[feet_rolls_wall_4]
Roll(s)*