Papel pintado negro blanco Moderno Salón Dormitorio Salón Objeto HECHO EN ALEMANIA 10,05x053m

SKU: 33126

Todos los wallpapers son por pedido

Visita nuestra categoría entrega inmediata.

Descripción
El yeso liso es hermoso. Un muro de piedra con un pasado tiene más encanto. Este papel tapiz digital juega con la estética de los defectos al representar grietas y pátina de una manera engañosamente realista. Esto recuerda a un cuadro abstracto, es un maravilloso escenario para muebles y sigue estando de moda. ¿Por qué? Porque el diseño tosco, en su sencilla belleza, nos recuerda a los edificios industriales de antaño. La alternativa al mundo digital satisface nuestro anhelo de seguridad. ¡Celebremos el pasado!
Detalles

Información adicional

Marca

Marburg

Color

blanco y negro

Estilo

moderno

Por patrones

blanco y negro

Política de pedido y envíos:

Verificar bien el codigo del diseño que ha escogido, el tamaño de cada wallpaper y el de su pared para que no hayan errores. Los pedidos se trabajan entre 10 y 15 días hábiles, a partir del lunes o jueves siguiente al día que realiza su orden y hace el abono, pedidos de 3 rollos o menos deben ser pagados en su totalidad.

 

Te recomendamos

Categorias
Wallpapers por Tema

Calculadora de rollo

Estas medidas son para rollos tamaño estándar de 0.53cm x 10m (5m²)

Pared 1
m

x

m

=

[width_wall_1]*[height_wall_1]

Necesitará

[width_wall_1]/0.53

Tira(s) de

[height_wall_1] * 106
cm

Para un total de

rollo(s)

Math.ceil( Math.ceil([width_wall_1] / 0.53) / Math.floor(10 / ([height_wall_1] * 100 / 100) ) )
Pared 2
m

x

m

=

[width_wall_1]*[height_wall_1]

You will need

[width_wall_2]/0.53

Stipe(s) of

[height_wall_2] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_2] / 0.53) / Math.floor(10 / ([height_wall_2] * 100 / 100) ) )
Pared 3
m

x

m

=

[width_wall_3]*[height_wall_3]

You will need

[width_wall_3]/0.53

Stipe(s) of

[height_wall_3] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_3] / 0.53) / Math.floor(10 / ([height_wall_3] * 100 / 100) ) )
Pared 4
m

x

m

=

[width_wall_4]*[height_wall_4]

You will need

[width_wall_4]/0.53

Stipe(s) of

[height_wall_4] * 106
cm

Para un total de rollo(s)

Math.ceil( Math.ceil([width_wall_4] / 0.53) / Math.floor(10 / ([height_wall_4] * 100 / 100) ) )

Vas a necersitar

[rolls_wall_1]+[rolls_wall_2]+[rolls_wall_3]+[rolls_wall_4]
Rollos*
Wall 1
m

x

m

=

[feet_width_wall_1]*[feet_height_wall_1]
ft²

You will need

Math.ceil(feet_width_wall_1 / ( 53 / 12))

Stipe(s) of

[feet_height_wall_1] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_1 / ( 53 / 12)) * feet_height_wall_1 * 10.02) / 10.05 * 3)
Wall 2
m

x

m

=

[feet_width_wall_1]*[feet_height_wall_1]
ft²

You will need

[feet_width_wall_2]/0.53

Stipe(s) of

[feet_height_wall_2] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_2 / ( 53 / 12)) * feet_height_wall_2 * 10.02) / 10.05 * 3)
Wall 3
m

x

m

=

[feet_width_wall_3]*[feet_height_wall_3]
ft²

You will need

[feet_width_wall_3]/0.53

Stipe(s) of

[feet_height_wall_3] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_3 / ( 53 / 12)) * feet_height_wall_3 * 10.02) / 10.05 * 3)
Wall 4
m

x

m

=

[feet_width_wall_4]*[feet_height_wall_4]
ft²

You will need

[feet_width_wall_4]/0.53

Stipe(s) of

[feet_height_wall_4] * 106
ft

For a total of roll(s)

Math.ceil((Math.ceil(feet_width_wall_4 / ( 53 / 12)) * feet_height_wall_4 * 10.02) / 10.05 * 3)

You Need Total

[feet_rolls_wall_1]+[feet_rolls_wall_2]+[feet_rolls_wall_3]+[feet_rolls_wall_4]
Roll(s)*